Maciej Malicki

Department
of Mathematics and Mathematical Economics

Warsaw School of
Economics

al. Niepodległości 162, Warsaw, Poland

email: mXmXlicki [at]gmXil.com (X=a)

PhD: University of Illinois
at Urbana-Champaign, USA

Msc: Warsaw University, Poland

Research
Interests: Polish groups, descriptive set theory,
mathematical biology

Papers:

Mathematics:

„Abelian pro-countable groups and non-Borel orbit equivalence relations”, submitted.

„Consequences of the existence of ample generics and automorphism groups of homogeneous metric structures”, submitted, arXiv:1405.1532.

„Abelian pro-countable groups and orbit equivalence relations”, submitted, arXiv:1405.0693.

„The automorphism group of the random lattice is not amenable”, to appear in

*Fund. Math.*“Generic elements in isometry groups of Polish ultrametric spaces”, to appear in

*Israel J. Math.,*arXiv:1312.6563."The automorphism group of the Lebesgue measure space has no non-trivial subgroups of index <2

^{ω}",*Coll. Math.*132 (2013), 121-128.“Cooperative Boolean systems with generically long attractors II”, (with Winfried Just),

*Adv. Diff. Eq.*2013,**2013**:268.“Cooperative Boolean systems with generically long attractors I”, (with Winfried Just),

*J. Diff. Equ. App*., 19 (2013), 772-795.“Rooted trees, strong cofinality and ample generics”,

*Math. Proc. Cambridge Phil. Soc.*154 (2013), 213-223.“Isometric embeddings of Polish ultrametric spaces”,

*Top. and its App.*, 159 (2012), 3426-3431.“Separable ultrametric spaces and their isometry groups”,

*Forum Math.*, DOI: 10.1515/forum-2011-0149“Automorphism groups of rooted trees have property (FA'), A new proof”,

*J. Group Theory*15 (2012), 291-299.“On Polish groups admitting a compatible left-invariant metric”,

*J. Symb. Logic*76 (2011), 437-447.“Isometry groups of separable metric spaces”, (with S.Solecki),

*Math. Proc. Cambridge Phil. Soc.*146 (2009), 67-81.“Non-locally compact Polish groups and two-sided translates of open sets”,

*Fund. Math.*200 (2008), 279-295.“An example of a Polish group”,

*J. Symb. Logic*73 (2008), 1173-1178.“Polishable subspaces of Banach spaces”,

*Real Analysis Exchange*33 (2007), 317-322.“On operations and linear extensions of well partially ordered sets”, (with A.Rutkowski),

*Order*21 (2004), 7-17.“Notes on the length, the structure and the cardinality of a chain”,

*Order*21 (2004), 201-205.

Philosophy:

“Matheme and Mathematics. On the main concepts of the philosophy of Alain Badiou”, to appear in

*Logique et Analyse.*“O gwoździach Searle'a. Analiza składu”

*Przeglad Filozoficzno-Literacki*(2011).